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ABSTRACT

The TRX code is being developed at Los Alamos National Laboratory to
modernize the development, execution, and interpretation of radiation-transport
calculations that are executed using the MCNP6 code. As part of this
development, a graphics-driven interface is being created to facilitate menu-
driven geometry creation using geometrical objects such as boxes, cylinders, and
spheres. To aid the user and automate MCNP6 input deck preparation,
algorithmic assessment of object proximity is needed. In this article, we present
the algorithms that are being used in TRX for proximity detection. The algorithms
are also designed to provide a prescription to reposition an object that is
determined to collide with another object. With one exception, these deterministic
algorithms are analytic expressions that are derived using trigonometry and
analytic geometry. In the exceptional case, the method of Lagrange multipliers
yields two bivariate quadratic expressions that must be solved numerically. The

algorithms are designed to have millisecond performance.
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1. INTRODUCTION

The TRX code is being created to enable model development and execution through a
graphical user interface. As part of this effort, capability must be developed to permit the
creation and placement of boxes (BOX), finite right cylinders (RCC), and spheres (SPH) in a
region of space. Intelligence must be developed to check the proximity of these objects and
determine whether these objects intersect, or collide, with each other. This determination impacts

the treatment of objects by MCNPG6 in terms of geometry plotting and particle transport.

Historically, the determination of object proximity has been made by the user during MCNP6
input preparation. In addition, the MCNP6 geometry plotting feature can be used to inspect
geometry. This feature utilizes a clever combinatorial geometry/Boolean algebra technique to
assess geometrical relationships. The geometry plotting treatment used in MCNP6 (Durkee,
2012) is not appropriate for TRX because it is designed to determine intersections of surfaces
with each other and the plot plane and draw the resulting curves at a number of points sufficient
to give curves that are visually pleasant. There is no information regarding object proximity

other than that generated for a designated plot.

MCNP6 geometry can also be assessed using particle transport to detect flaws. This can be
done in a pre-calculation mode by voiding the geometry and flooding the model with particles.
Or, it will be done as particles are transported during a calculation with all materials present. The
MCNPG6 particle-transport treatment is not appropriate for TRX geometry assessment because it

is used to determine whether a particle crosses a surface from one portion of the geometry to



another. Proximity assessment is thus done only at specific points as particles are transported.
Portions of the geometry may not experience particle transport, so geometry may not be suitably

assessed.

Neither of these MCNP6 geometry treatments is designed to identify object surface proximity
as required by TRX. Consequently, we have developed proximity assessment algorithms for
TRX. For purposes of implementation in TRX, two sets of algorithms are developed. Set 1 is
used to determine whether two objects intersect when they are in their optimal configuration.
Using MCNP6 terminology, this means assessing objects using their local-coordinate
characterizations. This is the simplest, quickest way to assess whether an object fits inside

another object.

Set 2 is used to determine whether two objects intersect when they are in their arbitrary
location and orientation. Using MCNP6 terminology, this means assessing objects in their
global-coordinate location and orientation. This is the more complicated treatment, and requires

a number of expressions and procedures to assess surface intersections.

The algorithms to be developed must provide suitably characterized intersection assessment.
We seek analytic, closed-form, deterministic algorithms that should execute with millisecond

performance so as to be imperceptible to the user.

In the following section, expressions for optimal geometries are developed. Section 3

addresses the derivations for objects with arbitrary location and orientation. Algorithms are



developed for BOX, RCC, and SPH macrobodies. We refer to these formulations as proximity-

detection schemes (PDSs).

2. PROXIMITY DETERMINATION FOR OPTIMAL ORIENTATION

The Set 1 formulations are used to characterize whether an object fits inside of another object

when both objects are in their optimal orientations.

2.1. BOXin BOX

Consider BOX A to be defined by 6 planes parallel to the x-z, y-z, and x-y planes as

illustrated in Fig. 1.
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Figure 1. Two boxes.
Then

PXp = Xar  PXpp = X
PYam =Yar PBYa2 =VYar- (1)
Pl =Zpy  PZp, =2y,

Similarly, for BOX B

PXgy = Xg1s  PXg, = Xp,
PYe1 = Ye1r  PYg2 = Ye2 - (2)
PZg, = Zgyy  PZg, = Zg,



For BOX A to fit inside of BOX B,

PXn > PXgy AN PX,, < PXg,,
PY a1 > PYg, aNd PY,, < PYg,, (3)
pZAl > szl and pZAZ < pZBZ'

For BOX B to fit inside of BOX A,

PXn < PXg, and PX,, > PXg,,
PY a1 < PYg; @Nd PY,, > PYg,, (4)
PZy < PZg and pz,, > Pzg,.

2.2. BOXin RCC

The expressions for the BOX Are given in Eq.(1). If the RCC is taken to be centered on the x-

axis, then

y?+2° +R2. )

In order that the BOX fit inside the RCC, it is required that

PX,p < PXg aNd PX,, > PXg,,

6
R, <Rzand R, <R; and R, < R; and R, <R, ©
where the radii R, R,,R;,and R, are defined as
1/2
R = Y/sz +Zf\2) '
1/2
2= y/zu + 2/242) J
)

Figure 2 shows a cross section of the BOX and RCC.
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Figure 2. BOXin RCC.

2.3. RCCin BOX

The equations of RCC A centered on the x-axis is

y?+2°+R;, (8)
while the equation for BOX B is given by Eq.(2). In order that the RCC fit inside the BOX, it is
required that

pXAl > pXBl and pXA2 < pXBZ’
R, <|Ye:/and R, <|yg,|and R, <|251|B and R, <|z,|

(9)

Figure 3 shows a cross section of the BOX and RCC.
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Figure 3. RCC in BOX.

2.4. BOXin SPH

This formulation is similar to the BOX in RCC discussed in Section 2.2 and illustrated in Fig.
2. The equations defining BOX A are given in Eq.(1). The equation of SPH B centered at the
origin is
X +y*+2° =R, (10)
In order that the BOX fit inside the SPH, it is necessary that

R., <R and R, <R, (11)

Ayz
where

(12)

11



2.5. SPHin BOX

The formulations resemble those for an RCC in a BOX discussed in Section 2.3 and
illustrated in Fig. 3. The equations defining BOX B are given in Eq.(2). The equation of SPH A

centered at the origin is
X*+y*+2° =R}, (13)
In order that the SPH fit inside the BOX, the conditions
R, <|Ye|and R, <|yg,|and R, <|zg|, and R, <|zg,| (14)

must be satisfied.

2.6. RCCinRCC

The equations of RCCs A and B are given in Egs.(8) and (5), respectively. The conditions

needed so that RCC A fits in RCC B are

PX, > PXg and pX,, < pXz, and R, <R;. (15)
2.7. RCCin SPH

The equations of RCC A and sphere B are given in Egs.(8) and (10), respectively. The
conditions required for RCC A to fit in SPH B are

R,<Ryand R <R, and R, <R, (16)

2.8. SPHin RCC

The equations of SPH A and RCC B are given in Egs.(13) and (5), respectively. The

conditions so that SPH A fits in RCC B are

12



R, >Ry and R, <|xg,|and R, <|Xg,|. (17)

2.9. SPHin SPH

This PDS is the simplest for the objects under consideration. The equations of SPH A and
SPH B are given in Egs.(13) and (10), respectively. The condition so that SPH A fits in RCC B is

R, <R,. (18)

3. PROXIMITY DETERMINATION FOR OBJECTS WITH ARBITRARY LOCATION
AND ORIENTATION

The formulations for Set 2 are developed to ascertain the proximity of two objects having
arbitrary location and orientation. These formulations determine the intersection, if any, of a
three-dimensional (3-D) surface with another 3-D surface. These PDSs are much lengthier and
more complicated than those for Set 1. Nevertheless, the PDSs are straightforward applications
of trigonometry and analytic geometry. In one instance, the PDS uses the method of Lagrange
multipliers. To better convey the concepts, each PDS is presented using itemized descriptions

followed by development of the requisite equations.

3.1. BOXand BOX

Proximity determination for two boxes is made using the planes and lines along each edge
of the boxes. In essence, the intersection of each of the 12 lines along the edges of BOX B with

each of the 6 planes defining BOX A is determined. The planes defining the surfaces of BOX A

13



are infinite in extent. Checks are then made to determine whether each point of intersection lies

within the extent of BOX A. Figure 4 illustrates a box colliding with another box.

Z
4 Xa4yYa4yZa4 { XaS,YaS,ZaB
1
| Xb7yyb7:Zb7
1
Xa7,Yar,Za7 ' Xb6,yb6:Zb6
Xa8,Yas,Z > |
a8 yaS a8 —’—E—,/ sz’ybs’st
Xb2,yb2,Zb2 Bl ety b8 Vb8, Z
- L---F--~ 1yb8,£b8
Xb3,yb3,Zb3 I S BOXB
--" |
Xbasyba,Zba i !
A e A T-======°7 :
Xb1,yb1,Zb1 o SEEEERES y
/ Xa2,Ya2,Za2
Xallyallzal ] L’
- BOX A
X Xa5,Yas,Za5 Xa6,Ya6,Za6

Figure 4. Collision of two boxes.

Each BOX has 6 sides and 12 lines along its edges. These characteristics are used to devise the
PDS for two boxes is:

1. Determine the equation of the plane for each side of BOX A.

2. Determine the equation of the line along each edge of BOX B.

3. Attempt to determine the POI of each plane of BOX A with each line of BOX B.

4. For each POI, determine whether the POI for the plane lies within the BOX A portion of

the plane.

14



The equation of the planes 7, on each of the six sides i of BOX A can be specified in terms
of the dot product of the normal vector A" to the plane and a vector in the plane as shown in
Fig. 5 (Tierney, 1974). The vector in the plane can be defined using the point P(x,y,z)in the

plane and the point P, (X, Y. Z,) ata vertdx point in plane i.

BOX A

v

X
Figure 5. Vector specification of plane z,; for BOX A.
So
7y A (P—Py)=0, i=1...6, (19)
where
P=xi+yj+zK, (20)
and
ISAi :XAif"'yAij"‘ZAilZ- (21)

Expanding Egs.(19)—(21) and rearranging,

15



ayX+bay+cyz=dy, (22)
where
d/Ti = a,"-\\IiXAi +b2li Yai +CEiZAi . (23)

The normal A" is determined using the cross product of two vectors ASand A% on face i of

BOX A, where

A =aji+bf j+cik, (24)
and

Al =aGi +bj j+c5k. (25)

The coefficients of these vectors are selected using points located at three vertices on each planar

side of BOX A. Using the designations in Fig. 1, the coefficients for A" are defined as

F F
Ay = Xps AL b11 =YY Cu=Zp—1Iy
F

—X
F

a22 - XAB XAS' bl2 = yA8 - yA5’ ClZ = ZAS - ZA5

F —X

Az = Xag — Xprs bfa =Yaa " Yar C3=Zp—In (26)
a2F4 = Xaz = Xazs bli =Y~ Yaz Clljl =Zp3—Lp |
ags Xps ~ Xa1s blfs = Yas ~ Yarr C1F5 =L Iy
aF = Xag = Xaa blfs = Yas ™ Yasr ClFe =Zpg—Lpg
and for Al are
ail = Xaz2 ~ Xars b1i =Ya2 ~ Yaur C1':1 =Zpp Iy
a12 = Xas ~ Xas: bfo_ =Yae ~ Yas: Cle =Zps ~Lps
a1F3 Xpas ~ Xars b;. =Yas ~ Yarr ClF3 =Zps—Ip 27)
a14 = Xas ~ Xazs blljl =Yas ~ Yaz: Clljl =Zps ~Zp2 |
a15 = Xp2 = Xa1s blf—, =Ya = Yu C1F5 =lpp "Iy
a16 = Xz ™ Xaa blfs =Yas~ Yasr C1F6 =Zp3—Ipg
The normal vector to plane 7z, is given by
AY = A x AL =ali+bY j+chk, (28)

16



where

R
ba =Cyay — a5y, . (29)
CA| =4y bzpi - bZFi azpi

For Step 2, the equation of the line along each edge of BOX B is determined by considering

the equation of the line ng (t) along each of the 12 edges of BOX B as given by
Lg; (1) : X = Xg; +agt
y=Yg+bgt, j=1...,12. (30)
Z=17y+Cgt
The point (X, Vg, Zg) i @ vertex through which L (t) passes. The quantities ag;, b , and cg,

are the coefficients of the vector EjE along the edges of BOX B as given by

BF =aSi+b j+cik, (31)
and
aBEl = Xg2 — Xg1» bBEl = Yg2 ~ Yaur Csl =2, —Zp
asz = Xg3 ~ Xg2» bBEZ = Ya3 ~ Ye2» ng = Zg3 — Lpy
aBEz = Xgs ~ Xaa b[|353 Ye4 — Yaa CBE3 =Zlp4 g3
a§4 = Xg1 ~ Xga» b§4 = YB1 ~ Y4 C§4 =Zg — gy
aBEs = Xgs ~ Xas: bBEs = Yg6 — Yas: 055 = Zgg ~ Zps
aBEe = Xg7 ~ Xge» bgs = Y87 ~ Yae> CBEG =Zg; — Zpg (32)
a§7 = Xgg ~ Xg7> bBE7 = Yes ~ Yo7 057 = Zgg — Zpy
aBEs = Xgs ~ Xgg» bBEs = Ye5 ~ Yas: 058 =Zp5 —Zpg
aE = Xgs ~ Xg1» bllazg = Yss ~ Va1 059 =Zgs — L
aslo = Xgs — Xp2» bBElo = Yee — Ye2: 0510 Zgs — Zp;
aBEll = Xg7 ~ Xga bBEn Ye7 — Yaas Cgll =1lp; ~ g3
aglz = Xgg ~ Xg4> bBElZ = Yes ~ Year CBElz = Zgg — Zp4

17



Step 3 is addressed by attempting to determine the POI of the surface of BOX A with each
line of BOX B. The POI for each line ng (t) with each plane of BOX A is determined. Each line
will intersect the planes of BOX A unless the line and plane are parallel. The intersections are
determined by inserting Eq.(30) into Eq.(22) and solving for the value of the parameter t for the

intersection of each plane 7, and each line Lg; (t) so that

N N N N
t = dAi _(aAiXBj +bAi yBj +CAiZBj)

1

33)
N N N (
Apidg + bAiij + CaiCp;

The POls are

PO, =[ X(t,), ¥(t,), 2(t,) |- (34)

Finally, for Step 4 each POI a determination is made as to whether the POI for the plane lies

within the BOX A portion of the plane. The concept is illustrated in Fig. 6.

/ LI/E-\l

L LAijl

/ P(tijlz)

Nt

Bj

——v————————————————
N
A
N
N
N
N
\
N
N
\

— POI,(t;)

LE _/ —~— P(tij31)
A2

>
<
v
AY
N
AN
AY
AN
AN
N
/ \
e e e e e e o2 N
°
w

>m

Figure 6. Intersection of a line from BOX B with a plane of BOX A.
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The intersection check is done by first constructing two lines are constructed that contain

POI ,; = POl (t;) and are oriented so that they are perpendicular to the ends of the box through
which they pass. The equation of the line L5, (t)along each of the 12 edges of BOX A is

Lik (t) 1 X=Xy +a-/Ekt
y:yAk+bEkt, k=1...12. (35)

E
Z=17, +Cul

The point (X, Y., 2y ) is @ vertex through which LS, (t) passes. The quantities aj, , by , and

ct. are the coefficients of the vector AF along the edges of BOX A as given by

Af =ali+bf j+chk, (36)
and

E
Ay = Xp2

E _ E

ALY bAl =Y~ Ynr Cm

E E
A

-X

Ap2 = Xaz ™ Xaz bfz =Yas 7 Yazr Car=Zps—Zp
aEe = Xas ~ Xazs b/Es =Yns ~ Yaz C/Es Zpa—Zp3
a-/E4 = Xp1 = Xna b/E4 =Yn~ Yas C/54 =Ly~ lpg
aEs = Xas ~ Xns> bEs =Yas ~ Yas: C/ES =Zpe ~Zps
a/Ee = Xa7 ~ Xpe: b/fe =Yar = Yae CAE\S =Zpr ~ps (37)
ai7 = Xpg ~ Xar b§7 = Yas ~ Yars CE7 Zpg —Zpa7
aEs = Xas ~ Xng> b/ES = Yas ~ Yaer C/Es =Zps ~pg
a/lig = Xas ~ Xaus bEQ =Yas ~ Yarr CEQ =TIy
ailo = Xas ~ Xazs bAElo = Yae ~ Yazr CElO =Zpg ~Zp;
aEll = Xa7 = Xaz» b/Ell =Yar ~ Yaz CEll =L Ips
ailZ = Xag ~ Xaa bAElZ = Yas = Yasr CElZ =Zpg~Zpg

The lines LAin(t) through POI ; are

19



L (0 X = x(t;) +au
y=y(t,)+bu, i=1...6; j=1...12k=1...12k #k. (38)

z=12(t;)+Cu

The intersection of the lines L5, (t)and LAijE(t) are next determined. Equations (35) and (38)

contain 6 equations and 5 unknowns X, vy, z, t, and u. Therefore, a unique solution can be obtained

using any 4 of the equations. Selecting the equations in x and y and solving gives

_ bElZ [X(tij ) — Y ] - aig y(tij)

iikk E E LWE
kK an +a by

(39)

and
Y ak _b/Ektijk;g - y(t;)
u. .=
ijkk bE~
AK

for BOX A sides i =1,...,6, BOX B lines j=1,...,12,BOX A lines through POI,; k=1...,12,

, (40)

and lines k =1,...,12 along the sides of BOX A. The intersection conditions for these lines are

t
t

<t; <t. .. Torwards"

ijkk ijk+1k !

(41)

>t >t -, "backwards"

ijkk ijk+1k ?

3.2. BOXand RCC

The BOX-RCC PDS analysis consists of two checks. The PDS for BOX B colliding with

RCC A'is:

1. First, intersections between the BOX and cylindrical portion of the RCC are determined.
2. Second, intersections between the BOX and the planes at the ends of the RCC are

determined.

20



Figure 7 illustrates a box colliding with a cylinder.

YA
A POIAj:l,z = POIA(tj:l,Z)
Xb7:yb7,Zb7
Xb61yb6+Zb6
Xb5yb5:Zb5
Xb21yb2,Zb2 b8syb8sZb8
Xb31yb3:Zb3
Xb4lyba:Zb4
Xb1,yb1,Zb1 y

Figure 7. Collision of a box with a cylinder.

Determination of the intersection of BOX B with the cylindrical surface of RCC A is made by
first considering the equation of the cylinder. The equation of a general cylinder can be written

as (Brown, 2003).

AX? +By® +Cz* + Dxy + Eyz + Fzx +Gx+ Hy + Jz+ K =0. 42
Yy

We write Eq.(42) for cylinder A as

AX*+B,y*+C,2* +D,xy+E,yz+ F,zx+G,x+H y+J z+K, =0, (43)

21



To determine the POls, the equation of a line along each edge of BOX B in Eq.(30) is inserted

into Eq.(43). The resulting quadratic expression in t is then solved to give the two values t;, , for
the POls for each line j and the cylinder as

_ —b; £ bj2 —-4a,C, (44)

t.. =
1.2 24,

where

~ E \? E \2 E\? ERE EE ELE
a, :AA(aBj) +BA(bBJ.) +CA(CBJ-) +D,agbg +E,bics + Focsag,

b, =2A,xgag + 2B,y b +2C, 2,05 + DA(xijBEj + Y85, )+ EA(yBJ.cBEj - szbBEj)

.(45)
+ Fy (25 + XgiCh; ) + Gy + H g + 3,
€, = A5 +BaYa +Caza; + DaXe Ve + EnYeZes + FaZeyXe; +GaXey + HaYe +JaZg + K,
If t;,, is real, then line j the intersects with the sphere at the locations
POIAj:l,Z = POIA(tj:l,Z) = X(tj'l,z)’ y(tj:l,z)! Z(tj:l,z) : (46)

If t;,, is not real, then no intersection between line j and the cylinder occurs.

If no intersection between RCC A and BOX B is determined, the an assessment is made to
determine whether BOX B intersects either of the planes at the ends of RCC A inside of the
circle defined by the intersection of the cylinder and plane. The determination of the

POI ,; = POl ,(t;) is done using the procedure presented above in Egs.(19)—(34). Here, there are

2 planes, 1=1,2, to consider for RCC A and 16 lines, j=1,...16, to consider for BOX B.
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A check whether POI ; lies inside the cylinder must be made. This is done by calculating the
distance d; between each POI,; and the center of the circle x,,Y,,z,in planes 7, as

illustrated in Fig. 8.

XA2 ! yA2 ' ZA2

POI ,; = POl (t;)

RCC A

XAl’yAl’ZAl

Figure 8. BOX B intersecting plane r,, atthe upper end of RCC A.
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The distance measure is

d; = {I:X(tij ) — Xy ]2 +|:y(tij )= Ya ]2 + [Z(tij )= 24 ]2}1/2 : (47)

The intersection assessment is

d; <R, :foreitheriandany jthen box intersects planeinside cylinder

(48)

d; > R, :forbothiandall jthen box does not intersect plane inside cylinder

3.3. BOX and SPH

The PDS for a box with a sphere is treated using a single determination:
1. Calculate the intersection of the lines on the edges of BOX B with sphere A.

Figure 9 illustrates a box colliding with a sphere.

) X(tj:z)! y(tj;z)a Z(tj;z) X(tj:l)’ y(tj;l)v Z(tj:l)

Xp7»yb7:Zb7
Xb6yb6:Zb6

Xp5,yb5:Zb5

Xb2,yb2,Zb2 b8:yb8,Zb8

Xb31yb3:Zb3

XbaslybasZba

\v >
Xb1syb1:Zb1 \/ y

Figure 9. Collision of a box with a sphere.
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The PDS formulation uses the equation of SPH A of radius R, centered at (X,,Y,,Z,)as
given by
2 2 2 2
(X=%,)"+(y=Ya) +(2-24) =Ry (49)
The intersection procedure uses Eq.(30) for the equations of the lines along the edges of BOX B.

Solving Egs.(30) and (49) simultaneously gives the two values of the parameter t at the POlIs for

line j and the sphere as

t b, +,/b? - 44.¢, (50)
12 = ~ )
! 28,
where
A 2 2 2
a, =a; +bj +C;
b, =2(a;x,; +b;y,; +¢;7,;), (51)
x 2 2 2 2
C; :x1j+ylj+zlj—RA
and
Xj = Xgj = Xa
Yij =Yg~ Ya- (52)
Ly =1~ 1,

If t;,, is real, then line j intersects the sphere. Otherwise, line j does not intersect the sphere.

3.4. RCCandRCC

We now consider the collision of two RCCs. The RCCs are cylinders of finite length,
consisting of a cylinder and planes at either end whose orientation is perpendicular to the

cylinder. The formulations must account for the finite extent of the cylinders. Figure 10

25



illustrates an RCC colliding with another RCC. At times in the following discussion we refer to

RCCs as cylinders with the understanding that cylinders of finite length are being treated.

XAl’ yAl’ZAl

XBl ! yBl ' ZBl

Figure 10. Collision of two RCCs.

The BOX-BOX PDS is not applicable to the collision involving two cylinders because the

cylinders do not have a finite number of edges. An RCC-RCC PDS is:

1. Determine vectors Aand B parallel to the axes of cylinders A and B. This implies moving
the tip of B to the tip of A,

2. Calculate the cross product of Aand B to obtain an orthogonal vector C .

3. Calculate the equation of the plane through the center of cylinder A with an orientation so

that C lies in the plane.
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4. Calculate the equation of the plane through the center of cylinder B with an orientation so
that C lies in the plane.

5. Calculate the parametric equations of the line L, that is parallel to C and is through the
intersection of the two planes.

6. Simultaneously solve the equations for cylinder A and line L, for the two points-of-
intersection POla; and POl ay.

7. Check whether either the points of intersection POIla; or POla, for cylinder A is in
cylinder B.

8. Because the cylindrical surfaces are infinite in extent, when two cylinders are found to
intersect a determination must be made as to whether the intersection occurs between the
ends of the RCCs.

9. If the RCCs are not found to intersect along their cylindrical surfaces, then consideration

must be give to the situation where the ends of the RCCs may intersect.

The analysis will consider (1) the intersection of the cylindrical surfaces and (2) the

intersection of one RCC with the plane at the end of the other RCC.

We begin with Eq.(43) for cylinder A,

AX*+B,y*+C,2* +D,xy+E,yz+ F,zx+G,x+H y+J z+K, =0, (53)

and write a similar expression for cylinder B as

X +B,y? +C,z° + Doxy + E yz + Fozx+Gox+Hy +J 2+ K, =0, (54)
B B B B B B B B B
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where coefficient subscripts A and B refer cylinders A and B, respectively. Vectors A and

B parallel to the axes of cylinders A and B are first determined, where

A=a,i+b,j+c.k, (55)
and
B=a,i+b,j+c.k. (56)

The Cartesian coordinate vector coefficients are written using the points at the center of each end

of the RCC so that
Ay = Xpp =Xy
bA =YY (57)
Ch=1Zp—In

and
Ag = Xgy — Xp;
bs =Yoo = Yer - (58)
Cg =Zg, — L

Next, the cross product C of Aand B is calculated as

C=AxB=a.+h.j+ck, (59)
where
a = bACB - CAbB
be =Cp85 —a,C5 - (60)

C. = aAbB - bAaB

The vector C is perpendicular to Aand B and, therefore, a plane containing cylinders A and B if

the centerlines of these cylinders intersected. That the centerlines do not typically intersect is not

important. The direction of C is important, as we see next.
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For Step 3, the equation of the plane through the center of cylinder A with an orientation so

that C lies in the plane is determined. The normal to this plane N, is given by

N, = AxC =a,i +by, ] +CuK, (61)
where

Aua = bACC - CAbC
bNA =Cpac —2,Cc . (62)
Cna = aAbc - bAaC

The equation of the plane is given by the dot product of N, and a vector in the plane from the

point P, (X, Y, Zx ) at the base of A and another point P(x,y,z)in the plane so that

N,-(P-P,)=0. (63)
Expanding and rearranging,
aNAX+bNAy+CNAZ = dNA’ (64)
where
dNA =Xy T bNA Yar+CuaZas - (65)

In Step 4 the foregoing procedure executed to calculate the equation of the plane through the
center of cylinder B with an orientation so that C lies in the plane. The normal to this plane N,

is given by

A

Ng = BxC =al +byg ] +CeK (66)
where

A = bBCC _CBbC
bNB =Cga; —35Cc . (67)
Cneg = aBbC _bBaC

29



The equation of the plane is given by the dot product of N, and a vector in the plane from the

point P, (X, Ve, Zg; ) @t the base of B and another point P(x,y,z)in the plane so that

Ng-(P—P;)=0. (68)
Expanding and rearranging,
aNBX+bNBy+CNBZ:dNB’ (69)
where
dNB = a'NB XBl + bNB yBl + CNBZBl - (70)

In Step 5 the parametric equations of the line L, that is parallel to C and is through the
intersection of the two planes are determined. These parametric equations are (Tierney, p 438)

L (t):x=X, +a.t
Y=Y +bc:t (71)
Z=12,+C.t

Line L, is normal to and passes through the centers of cylinders A and B.

The intersection point (x,,Y,,z,) is determined by stipulating either x, y, or z and substituting

into the two plane equations Eq.(64) and (69). This gives two equations of lines, the
simultaneous solution of which gives a point. When either of the cylinders is oriented so that its
axis is not parallel to any coordinate axis, then either X, y, or z can be stipulated. We arbitrarily

select

z=1,, (72)

so that Egs.(64) and (69) become
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aNAX+bNAy+CNAZI = dNA’ (73)
and

aNBX+bNBy+CNBZI :dNB' (74)

The simultaneous solution of Egs.(73) and (74) gives

X = bNB (dNA_CNAZI )_bNA (dNB _CNBZI) (75)
I aNAbNB _bNAaNB
and
_ dNB —CngZi — X ) (76)

Yi = by

When each of the cylinders is parallel to a coordinate axis, the line L, parallel to Cis parallel
to a coordinate axis. The stipulation of x, y, or z and subsequent substitution into the two plane
equations Eq.(64) and (69) is made according to whether C is parallel to the x-, y-, or z-axis. For
these cases, X, is stipulated and y,,z, are solved for, y, is stipulated and x,, z, are solved for, or
z, is stipulated and x,,y, are solved for as in Eqgs.(75) and (76), respectively. The stipulated

values of x,,y, or z, are arbitrary.

Step 6 concerns the simultaneous solution of the equations for the surface cylinder A and the
line L, for the two points-of-intersections POla; and POlao. This is done by inserting the
expressions in Eqg.(71) into Eq.(53) so that

agut’? +but+C, =0, (77)

where
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an:aéAA+b§BA+c§CA+acbcDA+bccCEA+aCcCFA

b, =(2a. A, +b,D, +c.Fy)x +(2b.B, +a;D,+C.E, )Y,
+(ZcCCA+bCEA+aCFA)z, +a.G,+b.H,+c.d, . (78)

Cop = AXZ+B,xy+C,z2+D,x Y, +E,Y,z, + F.X 2,

+G, X, +H,y, +J3,2, +K,

The quadratic expression in t given in Eq.(77) is solved for the two values t,, and t,,,

2 2
B —qu+,[qu—4anch . —qu—ﬂquA—4anch | (79)

ty = Ay =
2a,, 2a,,

The values t,, and t,, are the values of t for which L, intersects cylinder A. Substitution of t,,
and t,, into Eq.(71) gives the two POIS (X, Ya, Za)and (Xa,, Yas» Za,) ON Cylinder A,

Xy = X +at,,
Yn=Yot btAl ) (80)
Zy =1Zy+Cly

and
Xpp, = X, +at,,
Yaz = Yo +Dt,, . (81)
Z,,=1,+Ct,,

The process is repeated for cylinder B whereby insertion of the expressions in Eq.(71) into
Eq.(54) gives

agt’ +bgt+c =0, (82)
where

g = aZA, +0iB, +CiC, +ab. D, +b.C.Eg +a.C.Fy

b :(ZaCAB +b. Dy +CcFB)X| +(2b.B; +a.Dg +C.Ey )y,
+(2CCCB+bCEB+aCFB)ZI +aCGB+bCHB+CCJB . (83)

Cop = AXZ +Bgxy +Coz2 + DX, Y, +Egy,z, + FoX, 2,

+GXx, +Hgy, +352, + K,
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The quadratic expression in t given in Eq.(77) is solved for the two values t;, and t;, to give

2 2
_ _bQB + \A qu _4anCC|B t = _qu _\é qu _4anCqB . (84)

tBl - 1Bl T
23, 23,5

The values t;, and t;, are the values of t for which L, intersects cylinder B. Substitution of t,
and tg, into Eq.(71) gives the two POIS (Xg,, Vg, Zg;) @and (Xg,, Vs, Zg,) for cylinder B,

Xg; = X, +atg,
Yer = Yo+ stl ) (85)
Zg, =2, +Clg,

and

Xg, = X, +alp,
Yoo = Yo +Dtg, . (86)
Zg, =Z,+Clg,

In Step 8 a check is made to determine whether either the points of intersection POla; or
POla, for cylinder A is in cylinder B. To do so, an assessment of the relative values of the

parameter t is made. Consider Fig. 11.
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Cylinder B

Cylinder A

Figure 11. Two non-intersecting cylinders.

Cylinders A and B do not intersect when the following conditions are met:

tAl < tBl’ tA2 < tBl; (87)
1:AjL < tBZ’tAZ < tBZ'
Cylinders A and B intersect when some combination of parameters exists such that a parameter

for cylinder B is less than a parameter of cylinder A, e.g.,

ty <tg <tg, <t,,. (88)

In Step 8 we note that because the cylindrical surfaces are infinite in extent, when two

cylinders are found to intersect a determination must be made as to whether the intersection
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occurs between the ends of the RCCs. The parameter values t,,t,,,t;,,t;, for the POIs created
by the line L, through radial center of cylinders A and B and the axis vectors A and B are

known. Consequently, parametric equations of lines through these POIs in the directions of A

and B can be written. The intersection of these lines with the planes at the ends of the cylinders
can be calculated. An assessment as to whether the POls are between the ends of the cylinders

can then be made by consideration of the parameters for the lines.

The procedure is illustrated in Fig. 12.

B
4?2 Xntr Yar Zm an Xg21 Yp21 252
- -- / Xa2r Ya21Zp;
P j /7 \ ' A
== Cylinder A
P Po‘h L0
;, < Cylinder B
XBl’ yBl’ ZBl

Figure 12. Determination whether POl,; lies between the ends of RCCs A and B.

Consider the parameteric equations of the line L, (t) through POl in the direction of A,

L () x =X (ty)+ayt

y=Yy(ty)+b,t. (89)
7=17(ty)+C,t
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The equation of the plane z,, defining the end of RCC A through (X,,, Y, Z,,) With normal A is

ﬂAl:A-(IS—ISAl)=O, (90)
where
P=xi+yj+2zk, (91)
and
Py =Xyl + Y, ] +Z,K. (92)
Expanding and rearranging,
axX+b,y+c,z=d,,, (93)
where
dy =a,Xy +b,Ya +CaZy (94)

Now solve Egs.(89) and (93) simultaneously so that

- _dAl—[an(tAl)+bAy(tA1)+cAz(tAl)] .
=tan = a7 bl +c? ' (99)

At the other plane for cylinder A, the equation of the plane through (X,,, Y., Z,,) With normal A

is that
A-(P-P,,)=0, (96)
where
P=xi+yj+2zKk, (97)
and
P = XAZf +Ya j+ ZpK. (98)
Expanding and rearranging,
aXx+b,y+c,z=d,,, (99)
where
dA2 =Xy, t+ bAyA2 +CaZps - (100)

Now solve Egs.(89) and (99) simultaneously to obtain
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o Ao —[@X(ta )+ DY (ta ) +CaZ (ta) ] Lo1
T oanz ai+bi+ck ' (101)

The condition that POl lies between the ends of RCC A is
T <t <taias- (102)

If this condition is satisified, then the two RCCs intersect. If it is not satisfied, then the procedure

is repeated for POl a,.

For POlay, the parameteric equations of the line L,,(t)through POla, in the direction of A
are

Lo ()i X =X(t,,)+ayt

y=Y(ty,)+b,t. (103)
z=1(t,,)+C,t

The simultaneous solution of Egs.(93) and (103) gives

- _dAl—[an(tAz)erAy(tAz)+cAz(tA2)] Lo
=tow = a7 bl +cl ' (10)

The simultaneous solution of Egs.(99) and (103) gives

Ao —[ @X(ta )+ by (ta ) +CaZ(t,) ] |

t=t = 105
AzA2 ai +bi+ck (105)

The condition that POl x> lies between the ends of RCC A is
tA2A1 < tA2 < tA2A2 . (106)
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If this condition is satisified, then the two RCCs intersect. If it is not satisfied, then the
cylindrical sides of RCCs A and B do not intersect. If a non-intersection finding is made, then a

check must be made to determine whether the ends of the RCCs intersect.

Step 9 considers the situation where the ends of the RCCs intersect. Four cases of
intersections are possible: (1) top of RCC A and top of RCC B, (2) top of RCC A and bottom of
RCC B, (3) bottom of RCC A and top of RCC B, and (4) bottom of RCC A and bottom of RCC
B. Fig. 13 illustrates the case where RCC B penetrates the top planar surface of RCC A without

intersecting the wall of RCC A.
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Ty Xb2,Yb2,Zb2
POIBZB
Cylinder B
Xa2|ya2,za2
Xo1,Yb1,Zb1

Cylinder A

XaLYal,Zal

Figure 13. RCC B intersecting the top end of RCC A.
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This assessments begins by calculating the equation of the plane z,, through A and B,
vectors through (X, Ya,Za)and (X,,, Ya, Zs,), respectively, and parallel to the axes of the

cylinders. This equation is given in terms of dot product of the normal C to the plane, given by

the cross product of A and B, and a vector in the plane. The vector in 7, is written in terms of

a point P(x,y,z) and any point along A, so the point P, (X,,, Y., Z,) is selected. Then

7Tx :C(P—Py)=0, (107)
or
a.X+b.y+c.z=d., (108)
with
de =acXy +hcYu +CcZy - (109)
Next, the plane 7z, on the bottom of RCC B is
ey :B-(P—Py ) =0, (110)
so that
agX+bgy+czz=dg,, (111)
with
dg; =agXg, +05Ye, +CZg, - (112)

The intersection of planes z,; and 7z, is a line. The parametric equations of this line, L, , are

specified using a point on this line which is conveniently selected to be the point at the base and

on the axis of RCC B, Py, (Xs;, g1, Zg;) - The direction of line Ly, is perpendicular to the normals

to z,zand 7z, . So,

L, =BxC =a i +b,j+c K, (113)
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where

Qg = bBCC _CBbC
b g =Cgac —85C; - (114)
C = aBbC _bBaC

The parametric equations for the line Ly, (t)are

L, (1) i x = X5, +a,5t
Y=VYp t bLBt : (115)
=17, +C gt

A calculation is now made for the two POls at the intersection of L, (t)and RCC B, POlgt

(for “top”) and POlgig (for “bottom™). The designators “top” and “bottom” are used for
convenience — in essence, two values are calculated. Substituting the expressions in Eq.(115) into
Eq.(53) gives the quadratic

8 pt” + by et +Cyey =0, (116)

qLB1 qLB1

with the coefficients

s = arp Ay +b7sBs +¢55Cs +a,5b s Dg +bsC s By +a5C s
bye: = (28,5 Ag + 05 Dg +C 5 Fy ) Xgy +(2b5Bg +a,5Dg +C 5 Eg ) Ve

+(20,5C +b By +a5F; ) 2, +a,,Gg +bgHy +C0 55 . (117)
Coter = ApXey + B Xy +Cozgy + DX, Yoy + E Vi Zey + FoXeyZey

+GBXB1+ HByBl+JBZBl+ KB

The quadratic expression in t given in Eq.(116) is solved for the two values t ;, ;and t;, ,,

2
_quBl + \/ quBl - 4aqLBquLB1
2aqLBl

2
_quBl - \/quBl - 4aqLB1CqLBl
2aqLBl

Y HLB1-2 T

(118)

tLBlfl
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The parametric equation of the lines through POlg;t and POlgsg in the direction B are then given

by
LBlT (t) X=X T aBt
Y=Yt bBt (119)
= ZLBl—l + CBt
and

LBlB (t) X =Xig, + 85t
Y=Yt bBt . (120)
Z=12.5 ,+Cgst
The parametric equations of the lines in Egs.(119) and (120) are solved simultaneously with

the equations of planes 7, and =,,through the bottom and top of RCC A. For z,,, using

Egs.(90)-(94) and Eq.(119) gives

dy— [aAX (tLBl—l) +b,y (tLBl—l) +CuZ (tLBl—l )]

t= = , 121
LAl a,a, +b,b, +¢,Cq (121)
while Eq.(120) gives
t=t _ dAl _[aAX(thl—z)"'bAy(th—z)+CAZ (tLBl—Z ):l (122)
oA a,a, +b,b, +¢,Cq '
For 7,,, using Egs.(90)—(94) and Eq.(119) gives
t=t _ dA2 _I:aAX(tLBl—l)+bAy(tLBl—1)+CAZ (tLBl—l)] (123)
HeAz a,a, +b,b, +¢,C; ’
while Eq.(120) gives
t= tLBl—Z—AZ _ dA2 - I:aAX (tLBl—Z ) + bAy (tLBl—Z ) +CuZ (tLBl—Z )] . (124)

a,ag +b,b; +c,Cp
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Next, a check is made to determine whether the POls lie within the axial limits of RCC B.

This is done by assessing the intersection of RCC B with the planes r,,and 7,, at the lower and

upper extremities, respectively, of RCC A. The procedure is clarified by the diagrams in Figs.14

and 15, which show a cross-section of RCC A in plane r,,. The intersection of RCC B with
plane z,, can produce a circle, if the axes of RCC A and B are parallel, or an ellipse if the axes

of RCC A and B are not parallel. The intersecting surface can be contained entirely within RCC

A, or could be partially enclosed in RCC A.
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RCCBin
plane 7,

Xal,Yal 1Za1

RCCAn
plane 7,
POlaiT
RCCBin
plane 7,
\POIMB
Xal,Yal,Zal
RCCAIn
plane 7,

Figure 14. RCC B intersecting the base of RCC A for axes A and B parallel and out of plane

7, - Upper: complete intersection. Lower: Partial intersection with POla;r and POl out of RCC

A.
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B POlaiT

POla1
RCCBin
plane 7,

R_POlair

POla1s

A
Xal,Yal,Zal /

RCC Aiin
plane 7,

del(Xm’ ym’ Zm)

Xal,Yal vZal

RCC AN
plane 7,

Figure 15. RCC B intersecting the base of RCC A for axes A and B not parallel and out of

plane 7z, . Upper: complete intersection. Lower: Partial intersection with POla;rand POl Out

of RCC A.
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For the case where the axes of RCCs A and B are parallel, determination as to whether

intersection occurs can be made by comparing the radii of RCCs A and B, R,and R, and the
distance d,g from the center of RCC A in plane z,, to the point of intersection POlaim at the
center of RCC B with plane z,,. POlaiwm is given by the intersection of the line L;(t) parallel to
B through the center of RCC B and plane r,,. The parametric equations for the line L (t)are

Lg (t) 1 x = x5, + a5t
Y=VYet bBt : (125)
Z=1y +Cgt

Substitution of these expressions into the equation of plane z,, given in Eq.(93) and solving for t
gives

t=t, = _(ansl + bAyBl + CAZBl) _ (126)
a,ag +b,b; +c,Cp
The distance d,; is thus
2 2 2
d, = {[xm —x(ty, )] +[yAl —y(ty )] +[zAl—z(tM )] } (127)

Intersection of RCCs A and B occurs when

dp <R, +R;. (128)

Assessment of the intersection when the axes of RCC A and B are not parallel is more

complicated because the orientation of the ellipse in plane 7, depends on the orientation of

RCC B. The assessment is done in two stages.
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In Stage 1, checks are made to determine whether either the “top” or “bottom” intersection

points of RCC B with RCC A plane z,,, R POl ,; or R POIl,; , lie inside RCC A. Thus,

R POl <R,

. (129)
R POI,,, <R,

If either condition is satisfied, then RCCs A and B intersect.

If neither condition is satisfied, then a more complicated intersection check is necessary for
Stage 2. This situation is illustrated in Fig.12 for the case where the intersection of RCC B with

plane z,, creates an ellipse that may partially intersect RCC A. Here, an intersection assessment
can be made by determining the minimal distance between the center of RCC A in plane 7,;,
(xAl,yAl,zAl), and the ellipse. To do so, the method of Lagrange multipliers (Trench and
Kolman, 1972) is used to do the analysis. Using this technique, the distance d,, between the
center of RCC A in plane 7z,,, (Xx, Y, Za ), and the intersection of the cylinder with plane 7,

i.e., the ellipse, is minimized. It is convenient to use the distance measure*

f(x,y,z)zdezl:(x—xAl)Z+(y—yA1)2+(z—zAl)2, (130)

where f(x,y,z)is termed the objective function.

! This form simplifies the analysis as compared to using f(X,y,z) = d;.
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This distance is minimized subject to two constraints. Constraint 1 is that all values (X, y,z)

must lie on the surface of the general cylinder given by Eq.(54) and written here as g,(X,y, z),

where

0,(% ¥, 2) = AX° +Bgy? +Coz” + DXy + Egyz + Fuzx +Gpx + Hoy + 3,2 + K, =0.(131)

Constraint 2 requires that all values (x, y,z) lie on the line designated by the vector I:el

originating at the center of RCC A in plane z,,, (xAl, yAl,zAl), and oriented in the plane 7.

Thus,

—_ A

Ly = (X=X )T+ (Y= Yu ) F+(z—20)K. (132)

This constraint is needed to ensure that the minimial distance is between calculated in the plane

7.2 Vector L, must be perpendicular to the normal A of the plane 7z,, so that Constraint 2

9,(x,y,2)is
gz(X, Yy, z)= A I:el =0, (133)
or
9,(%, Y, 2) =8, (X=X ) +Dy (Y= Yu ) +Ca(2—24)=0, (134)
or
g,(x,y,z)=a,x+b,y+c,z—d, =0. (135)

2 Consider RCC Ato be a quarter and RCC B to be a toothpick which slightly penetrates the quarter near the outer
periphery of the quarter. RCC B might be oriented almost parallel to the bottom of the quarter so that the minimum
distance between the center of the quarter and the toothpick is much less than the distance from the center of the
quarter to the location of intersection of the quarter and toothpick.
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The Lagrange multiplier formulation can be simplified by first solving Eq. (134) for z so that

Z(X, y): [dAl_(a:X—bAy)] . (136)

The analysis proceeds using bivariate expressions in the independent variables x and y.

An auxiliary function Fis formed using the objective function in Eq.(130), the explicit
constraint in Eq.(131) and the implicit constraint in Eqg.(136), and the Lagrange multiplier A so

that

F(xy)=f(xy)+ig(xy). (137)

The conditions to be satisfied are

X OX X
: (138)
F = a + /la—g =0
o oy oy
Solving the expressions in Eq.(138) yields
aag_tag_ (139)
OX 0y 0y OX
Evaluation of the partial derivatives gives
a_ 2(x—xAl)+2(z—zA1)@
OX OX
(140)
ﬂ:2(3/_yA1)"'2(Z_ZA1)g
oy oy
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og 0z 0z 0z 0z
—=2AXx+2C, —+ D y+E;y—+F | —X+2 [+G; +J; —
X A o ox eY TEeY oy B(ax j ° TP ax
d d d d oz (149)
EQ:ZBBy+ZCBEZ+DBx+EB(z+y§]+FB5ZX+HB+JB—Z
and
Z_ 3% 2 b (142)
OX c, oy Cp
Inserting the expressions in Eqgs.(141) and (142) into Eq.(139) gives
Aasz + BBLy2 Dg Xy +Gg X+ Hp Y+ Ky =0 (143)

where (Wolfram, 1991)

Ay =4Aa,h,C, + 2D, (c} +aic, ) - 2E, (a) +a,c} )+ 2F; (aib, —b,c)
By, = 4Bya,h,C, — 2D (C} +bic, )+ 2E, (~a,b? +a,c2 )+ 2F, (b +b,c3 )
Dy, =—4A; (3 +bic, )+ 4B, (C3 +ajc, ) —4E; (aib, +b,ch )+ 4F, (a,bs +a,c} )
Gy =4A, (—bAcizAl + bAcAdAl)—4CBbAci +2D, (aACf\ZAl - aACAdAl)
+E, (—Zaf\cAzAl +4aid,, +2cid, + 2aAc,§xAl)
+ FB (ZaAbACAZAl - 4aAbAd mt 2bAC/ZAXAl B aAC/Z*yAl)
—2G,a,b,c, +2H, (ch +a%c, ) - 20gb,ch
He, = 4By (2,652, —a,Ca0 ) +4C5a,Ch + 2D, (—b,Chz,, +b,C,d )
+ By (—2a,0,C,2, +4,0,d,, +4b,CiX, —23,C0Y, )
+F (2b/§CAZA1 - 4bidA1 - ZC/Z\d AL 2bAC/ZAyAl)
—2G, (¢ +hic, )+ 2H,a,b,c, +2J,,C)
Kg =4C, (bACf\XAl - aAciyA1)+ 2E, (aAcAdAlel —a,d} —Cf\dAlXAl)
+ 2FB (—bACAd amla T bAd /:2\1 + Cid AlyA1)+ 2GB (_bACf\ZAl + bACAd at CiyAl) (144)

2 3 2 2
+2H B (aACAZAl - aACAdAl - CAXAl) +2] B (bACAXAl - aACAyAl)
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Equation (130), with Eq.(136), and Eq. (143) constitute two general quadratic equations in the
unknowns x and y. In general, their simultaneous solution must be obtained using a multivariate

root-finding algorithm.

If a POI is determined, then the procedure is terminated. If no POI is located, then the
foregoing analysis is repeated for the upper end of RCC B, and then for the upper end of RCC A

and the ends of RCC B.

3.5. RCC and SPH

The intersection of a cylinder and a sphere requires formulations and evaluation procedure
that differs from those for the preceding types of intersections. It is necessary to treat three
primary configurations characterized in terms of the location of the center of the sphere relative
to the cylinder. Configuration 1 pertains to a sphere that is located such that its center lies
between the axial extremities of the cylinder as illustrated in Fig. 16. Configurations 2 and 3, to

be discussed later, consider the sphere when its center is beyond either end of the cylinder.
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Sphere B

Figure 16. Collision of cylinder and sphere for Configuration 1.

The RCC-SPH PDS is:

1. Determine the vector A parallel to the axis of RCC A

2. Calculate the parametric equations of the line parallel to A through the base of the RCC.
3. Calculate the vector B from the center of SPH A orthogonal to A.

4. Form the parametric equations for the line in the direction B through the center of SPH A.

5. Use trigonometry to determine the POI.
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Configuration 1: sphere is inside of axial extremities of cylinder.

Referencing Fig. 16, consider a cylinder A with a base located at P(x,, Y, Z,,) as referenced
by the vector P, extending from the origin to (X,,Y..Z,) The cylinder is oriented in the
direction of vector A, and has a radiusR, and length d,, with terminal centerpoint located at

P(Xup, Yan» Zs,) - The vector A is given by

A=a,i+b,j+c.k, (145)
where
Ay = Xpp =Xy
bA =Ya2 Y- (146)

Ch=1Zp—Ip

A fixed point and a fixed direction characterize a line in three dimensions (Tierney, 1974). Thus,

if the pointP(X,,Y,.2Z,)is a point on line L which has the direction of vector A and

P(x,Y,z)is any point on L, there exists a scalar t such that

P=P,+tA, (147)

Every vector equation is equivalent to three scalar equations, obtained by equating the
components of both sides of the equation. Thus, EQ.(147) is equivalent to the three scalar
equations

X=Xy +a,t
Y=y, +b,t. (148)
Z=17, +C,t
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These expressions are known as the parametric equations of L with t serving as the parameter.

Also consider a sphere B whose center is located at P(Xg, Yz, Zg) as referenced by the vector

P, extending from the origin to (X, Y5, Z5) - The sphere has a radius R, .

To develop a cylinder-box PDS, we first construct a vector B extending from the center of the
sphere through the center of the cylinder with a direction such that B is orthogonal to A. The

vector B is given as

B=a,i +b, j+c.k (149)

Similar to the discussion for A, if the point P(x5, Y, Zg) is a point on line M with the direction of

vector B and Q(x, y, z)is any point on M, there exists a scalar u such that

Q=P,+UB. (150)

The equation of a line M in the direction B through the point P(Xg, Ys,25) can be written in terms

of the parameter u as
X =Xg +agu
y=ys+bgu. (151)
Z=12,+CgU

Lines L and M have the point of intersection (POI) at P(X,,Y,,z,) . The coordinates of this point

permit us to write the coefficients of B as

g = X; —Xg
be =Y — Ve - (152)
Cg =2, — 14
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To determine the POI, it is convenient to develop trigonometric formulations. First, the

quantity d, is defined as the distance between cylinder endpoint (X, Y, Z,,)and the POI on the
centerline of the cylinder. Similarly, d,is defined as the distance between (x,,,Y,,,Z,,)and the

POI. The total length of the cylinder can be written in terms of d, and d,as

2 2 2 1/2
dcy:dl+d2:[(xA2—xA1) +(Ya2 = Ya) +(zA2—zA1)J . (153)

Second, the quantity d,,is defined as the distance between the center of the sphere
(Xs, Ys.Zg)and the endpoint (X,, Y., Zs)0n the centerline of the cylinder. Similarly, d,,is

defined as the distance between (X, Yg,2g) and (X,,, Y., Zs,) - These distances are given as

12
dhl :|:(XA1_XB)2 +(yAl_yB)2 +(ZA1_ZB)2j|

, , 2 (154)
dh2 :|:(XA2 _XB) +(YA2 _yB) +(ZA2 _ZB) J
and are thus known values.
Third, use of the Pythagorean theorem yields the relationships
d2 =d? +d?, (155)
and
dZ =d? +d2. (156)

Fourth, Eqgs.(155) and (156) are solved using Eq.(153). Solving Eq.(153) for d,, substituting

in EQ.(156), and solving the resulting expression and Eq.(155) simultaneously gives

2 2 2
. dhl _dh2 +dcy

d
' 2d,,

(157)

and
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d, =d, —d,. (158)

The value d, given by Eq.(157) corresponds to the parameter t=t, =d,, which can be used in

Eq.(148) to give the POI (x,,Y,,Z,).

A determination as to whether the sphere intersects the cylinder can now be made. First, the
parametric equation of the line M along B given by Eq.(151) is evaluated using the coefficients
in Eg.(152). Two values of the parameter u are selected,

u =R
R (159)
u, =-Ry

so that the closest and furthest distances d(R;)and d(—Ry) from the POI to the sphere along M

are determined as

1/2

d(RB) EdBl :[(X| _XBl)z +(y| _yBl)Z +(Z| _251)2}

o (160)
2 2 2
d(-Rg) =dg, :|:(XI _XBZ) +(Y| - YBz) +(Zl _ZBZ) J
The criteria for the sphere intersecting with the cylinder is
dg, <R, :sphereintersectscylinder
dg, > R, :spheredoes notintersect cylinder
B1 A p y (161)

dg, < R, :sphereintersects cylinder
dg, > R, :spheredoes notintersect cylinder
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Configuration 2: sphere lies to “left” axial extremity of cylinder.

Figure 17 contains an illustration of the geometry for Configuration 2. Here the designation of
the position of the sphere “beyond” the axial extremity of the cylinder is here in terms of the

center of the sphere, P(X;,Y5,25), and the point on the centerline of the cylinder

P(Xa, Ya, Za) as indicated in Fig. 12.

A

P(XAZ ! yA2 ! ZAZ)

Cylinder A

Sphere B

Figure 17. Collision of cylinder and sphere for Configuration 2.
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For this configuration, which is illustrated in Fig. 17, the following formulations apply:

42 —d? +d2, (162)
dZ =d? +d2. (163)

2 2 22
dcy=d2_d1=|:(XA2_XA1) +(YA2_YA1) +(ZAz_ZAl) } (164)

The expressions in EQgs.(162) and (163) are identical to those in Egs.(155) and (156). The
distance measure in Eq.(164) differs from Eq.(153) because the POI lies beyond the end of the

cylinder. Thus, d,is measured between the “left” end of the cylinder and the external POI and,

while d, is now greater than d, .

Solving Eq.(164) for d,, substituting in Eq.(163), and solving the resulting expression and
Eq.(162) simultaneously gives

dg—d?, +d2
d=-——"—9 20“'2 2 (165)
cy

and

d, =d,, —d,. (166)

The sign in Eq.(165) is the opposite of the sign in Eq.(157), while Eq.(166) is identical to

Eq.(158). The value d, given by Eq.(165) is used as the parameter t =t, =d,, which can be used

in Eq.(148) to give the POI (x,,Y,,Z,).
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Four types of geometry arrangements are assessed to determine whether the cylinder and
sphere intersect. These are illustrated in Figs. 18-21, inclusive of the distance and dimension

quantities needed to determine insection.

Type 1: No intersection — no overlap.

Here d, >d_and d, > R;forall d, . The sphere is centered a distance d, from the end of the

cylinder. The surface of the sphere at radius R; is less than d, ; hence, no intersection occurs.

Cylinder A

XBl’ yBl ) ZBl

P(XB ! yB ! ZB)
Sphere B

Figure 18. Collision of cylinder and sphere for Configuration 2, Type 1.
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Type 2: No intersection — overlap.

Here d, >d,, d, >R;, and d, > R;. The sphere is centered a distance d, from the end of the

cy !
cylinder. The surface of the sphere at radius R; is greater than d,. The distance d, between the
end edge of the cylinder and center of the sphere is greater than R;; hence, no intersection

occurs.

Cylinder A

XBl’ yBl7 ZBl
P(XB’ yB’ ZB)

Sphere B

Figure 19. Collision of cylinder and sphere for Configuration 2, Type 2.
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Type 3: Side-end intersection.

Here d, >d,, d, <R;,and d, <R;, where

cy !

d, =(d?+d2,)

is the minimum distance between the sphere and the end of the cylinder and

dg, =d, —R,.

For these conditions intersection occurs.

Cylinder A

P(XAl’ yAl’ ZAl)

XBl’ yBl ' ZBl

Sphere B

Figure 20. Collision of cylinder and sphere for Configuration 2, Type 2.
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Type 4: End intersection.

Here d, >d,, d, <R;, and d, <R;. The sphere intersects the cylinder through the surface of

cy?

the plane defining the ends of the cylinder. For these conditions intersection occurs.

Cylinder A

P(Xxs Yo Zm)

XBl’ yBl' ZBl
P(Xg: Ye:25)

Sphere B

Figure 21. Collision of cylinder and sphere for Configuration 2, Type 4.
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Configuration 3: sphere lies to “right” axial extremity of cylinder.

Figure 22 contains an illustration of the geometry for Configuration 3.

P(XAJ_’ yAl’ ZAl)

B
A
Q
P(Xs: Ye:Zs)
d,
d,
dy,
R B
I:)B
dl XBl’ yBl' ZBl
dhl P(XAZ’ Yaz: ZAZ)
Sphere B
dg,
Cylinder A
Pa
y

Figure 22. Collision of cylinder and sphere for Configuration 3.
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For this configuration, the following formulations apply:

o2 —d?+d?, (169)
d, =d?+d;. (170)

2 2 22
dcy =d1_d2 =[(XA2_XA1) +(yA2_yAl) +(ZAz_ZAl) } (171)

The expressions in EQgs.(169) and (170) are identical to those in Egs.(155) and (156). The
distance measure in Eq.(171) differs from Eq.(153) and Eq.(164) because the POI lies beyond

the “right” end of the cylinder. Thus, d,is measured between the end of the cylinder and the

external POl and, while d, is now greater than d, .

Solving Eq.(171) for d,, substituting in EqQ.(170), and solving the resulting expression and

Eq.(169) simultaneously gives

2 2 2
. dhl _dh2 +dcy

172
| 2, (172)

and

(173)

The sign in Eq.(172) is the opposite of the sign in Eq.(157), while Eq.(173) has the opposite sign

to Eq.(158). The value d, given by Eq.(172) is used as the parameter t=t, =d,, which can be

used in Eq.(148) to give the POI (x,,Y,,Z,).
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3.6. SPH and SPH

Proximity assessment of two spheres requires the simple calculation of the distance between

the centers of the spheres in relation to their radii. The procedure is illustrated in Fig. 23.

/dAB

Sphere A
Sphere B

<V

Figure 23. Determination whether POl,, lies between the ends of RCCs A and B.

The PDS is

d,s > R, + R nointersection

: . (174)
d,s <R, +R; intersection
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4. SUMMARY AND CONCLUSIONS

The Los Alamos TRX code is being developed as front-end to the MCNP6 Monte Carlo
radiation-transport code to facilitate model creation and execution using a user-friendly graphical
user interface. The TRX graphics tool will plot geometry, but should also have the knowledge to
understand object proximity. This knowledge is necessary for the automated creation of the

geometry information required by MCNP6.

Historically, MCNP6 model preparation has required that the user determine object proximity.
This process has been aided by the MCNP6 geometry plotter, which can be used to inspect
geometry for flaws. This feature is not appropriate for TRX because it identifies intersections of
surfaces with each other and the plot plane and draws the resulting curves. Hence, there is no
information regarding object proximity other than that generated for a designated plot. MCNP6
geometry can also be assessed using particle transport to detect flaws. Proximity assessment is
limited specific points, and portions of the geometry may not experience particle transport so that

all of the geometry may not be assessed.

We have developed algorithms to provide suitably characterized object proximity assessment
capability to TRX. We have avoided algorithms that iteratively assess proximity. Moreover, the
algorithms are also designed to provide a prescription to reposition an object that is determined
to collide with another object. Thus, the expressions are not developed by simple simultaneous
solution of the equations for two surfaces. Instead, equations of lines between two surfaces are
used to provide a characterization of the minimal distance between surfaces. Objects can then be

separated using a single parameter for the equation of the line. With one exception, the
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algorithms are deterministic and analytic. A numerical solution is required for the case of an

intersecting ellipse and circle.
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